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An extension of probabilistic PERT/CPM is proposed as a framework for soliciting ex-
pert opinion to characterize random variables for stochastic treatment in simulation models.
By eliciting minimum, modal, ninetieth percentile, and maximum estimates, the distribution
of variables with probability density functions of beta form can be explicitly characterized
without relying on the traditional, but empirically unverified, assumption of a standard devi-
ation equal to one-sixth of the range. This practical and inexpensive technique is illustrated
by application to a wildfire protection planning problem – estimating the time required to
produce a given length of fireline by different firefighting resources under diverse conditions.
The estimated production times are an essential input to a planning model of initial attack
on wildland fires used by the California Department of Forestry and Fire Protection, and
provide that agency with useful “rules-of-thumb” for use in firefighter training.
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1. Introduction

Simulation models can often be enhanced by stochastic treatment of the time
required to perform some activity. However, practical and budgetary constraints on
direct measurement of production processes often preclude such enhancements. Expert
knowledge is an attractive alternative source of quantitative information on processes
for which stochastic treatment is essential, but on which direct measurement is infea-
sible or impractical. Fireline production, a critical element of the simulation of initial
attack on wildland fires, is an example of such a phenomenon.

There have been numerous attempts to improve planning for wildland fire control
through the use of simulation modeling [6]. The California Department of Forestry
and Fire Protection (CDF) initiated such an effort in response to a request from the
State Board of Forestry to conduct an efficiency analysis of the agency’s wildland fire
control activities to justify its expenditures on such activities. At the outset of this
effort, the CDF decided to focus attention on initial attack. This decision reflected
the large share of the agency’s budget going to initial attack, a policy of aggressive
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action to prevent the loss of property and resources (i.e., to keep fires small), and
the availability of a deterministic initial attack simulator [11]. This model simulates
the production of fireline around wildfires spreading at different rates at each of a
limited number of representative fire locations over the course of an average year.
Simulated annual fire losses resulting from alternative deployments and positioning of
firefighting resources provide an objective basis for making changes in actual practice.
Experimentation with this model has shown that fireline productivity critically affects
simulation results, and by extension, all decisions based on such information. Experi-
ence with the simulator as a decision-making tool brought to light a number of serious
shortcomings, particularly those stemming from ignoring the pervasive “real world”
variability in the effectiveness of initial attack efforts. For a system in which prevent-
ing extreme events is acknowledged to be of paramount importance, this variability
must be captured if simulation results are to have either credibility or reliability [1].
This situation motivated the development of a new stochastic initial attack simulation
model that explicitly accounts for variability in, among other things, fireline production
rates.

The fire literature contains dozens of fireline production rate studies for different
firefighting resources [4,5,9,10]. The rates reported in these studies depend upon crew
size, fuel type, percent slope, and whether line construction moves up or downhill.
The rates vary widely among studies: differences of 500 percent are not uncommon
for what appear to be the same type of firefighting resources operating under the same
conditions. Even allowing for inconsistencies in experimental design, this degree of
variability clearly indicates that fireline production is most appropriately simulated as
a stochastic variable. Unfortunately, these studies usually report only tables of rates by
fuel and resource type, typically with many cells empty. The rates in these tables are
usually interpreted as averages, despite the fact that they are often based upon a single
observation per cell. Not surprisingly, basic distributional parameters (e.g., variance)
are seldom reported, and can rarely be inferred from comparisons across studies.

In addition to their shortcomings as a basis for stochastic simulation, most prior
production rate studies were conducted using personnel from other fire control agencies,
and in vegetation not characteristic of CDF protected areas. Several costly attempts to
directly measure production rates using CDF produced only a limited number of obser-
vations for conditions that represented a small fraction of the spectrum of firefighting
situations encountered by the CDF.

To address these deficiencies in the available data, we conducted a statewide
expert opinion survey, asking firefighters to estimate local production rates for the
types of firefighting resources that they ordinarily command (fire engines, bulldozers,
or handcrews). The survey methodology was inspired by probabilistic PERT/CPM
methods, and produced time estimates suitable for characterizing fireline production
rates as beta random variables in a stochastic simulator. (More accurate “point” es-
timates for use in the CDF’s existing deterministic initial attack simulator were also
obtained.) Beta distributions are usually unimodal, have a finite range, and can be
symmetric or highly skewed. This flexibility makes beta distributions well suited to
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describing nondeterministic production processes for which the “true” distribution is
unknown [8].

The mechanics of the survey method and the analysis of the responses are outlined
below in the context of describing the rates at which firefighting resources can produce
fireline around a wildfire’s perimeter.

2. Probabilistic PERT/CPM

Probabilistic PERT/CPM is a project management technique for describing the
various activities that comprise a project, their precedence relationships, costs, and
time requirements. The technique is “probabilistic” in the sense that it regards the time
required to complete any activity, and by extension the time to complete the project,
as stochastic variables [8]. This probabilistic treatment is based on expert estimates
of the minimum, modal and maximum time required to complete each activity in a
project – Tmin, Tmode, Tmax. When scaled over the interval (0, 1):

τmin = 0, τmax = 1,

and

τmode = (Tmode − Tmin)/(Tmax − Tmin). (1)

These transformed estimates are assumed to be the endpoints and modal value of a
beta distribution with probability density function

f (τ ) =

[
Γ(α+ β)
Γ(α)Γ(β)

][
τ (α−1)(1− τ )(β−1)]. (2)

Implicitly, this says that the time required to perform some task has a unimodal distrib-
ution with finite minimum and maximum bounds. This distribution may be symmetric
or asymmetric. Integrating τf (τ ) with respect to τ , the expected value and variance
of τ are

E(τ ) =
α

α+ β
(3)

and

V (τ ) =
αβ

[(α+ β)2(α+ β + 1)]
. (4)

Setting d[f (τ )]/dτ = 0 and solving for τ , the modal value of τ is

τmode =
α− 1

α+ β + 2
. (5)

In probabilistic PERT/CPM practice, the objective is to put confidence limits
on the time needed to complete an entire project. As a result, it is not necessary to
explicitly estimate the α and β parameters of the beta distributions describing the time
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needed to complete any particular activity (e.g., building fireline along a flank of a
fire). The three time estimates are used only to calculate an approximate mean:

T̂ =
[Tmin + [4Tmode] + Tmax]

6
. (6)

3. Extension

An approximate mean, however, is an insufficient basis for stochastic simulation
of fireline production. Even with an approximate variance, it would be difficult to de-
vise a sampling process to compensate for skewness of the true distribution. However,
by eliciting estimates of a fourth point on the distribution of T , the parameters of the
underlying beta distribution can be calculated directly, allowing for explicit consid-
eration of skewness, without relying on equation (6) or its implicit assumption of a
standard deviation of production times equal to one-sixth of the range:

V (T ) =

[
(Tmax − Tmin)

ρ

]2

, (7)

where the parametric constant ρ is set to 6, or in terms of the beta distribution:

V (τ ) =

(
1
ρ

)2

(8)

again with ρ = 6. A “fourth point” amenable to estimation by experts is the ninetieth
percentile value (T90), i.e., the one that would be exceeded ten percent of the time [7].

Specifically, beta distribution parameters α and β can be derived from equations
(4), (5), (8) and estimates of Tmin, Tmode, T90, and Tmax. Setting the right hand side
of equation (8) equal to the right hand side of equation (4) and substituting in a value
for ρ (e.g., 6), τmode can be substituted directly into equation (5) to obtain a system of
two equations in two unknowns:

α=
[τmode(β + 2) + 1]

1− τmode
, (9)

0 = β3 + β2[τmode
(
−ρ2τ 2

mode + 2ρ2τmode − ρ2 − 7
)

+ 4
]

+β
[
16τ 2

mode − 18τmode + 5− ρ2(−2τ 3
mode + 5τ 2

mode − 4τmode + 1
)]

+
[
−12τ 3

mode + 20τ 2
mode − 11τmode + 2

]
. (10)

Solving the cubic equation for β yields either 1 or 3 real roots. In cases where 3 roots
are found, β can be assigned the value of the largest root.

The parameter ρ reflects the degree of dispersion of a beta distribution. As ρ
increases, V (τ ) decreases. In the absence of more specific information, a value of 6
is a reasonable choice for a unimodal distribution [8]. The value assigned ρ can be
critical in simulation applications, however, since it determines the relative frequency
of “extreme” values in the tails of a beta distribution.
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Estimates of T90 allow the value of ρ to be assessed in a straightforward manner.
By scaling T90 over the interval (0, 1):

τ90 =
(T90 − Tmin)

(Tmax − Tmin)
. (11)

An estimate of ρ can be obtained using iterative numerical integration of the probability
density function in equation (2). In the first iteration, equations (9) and (10) are
solved α and β with ρ set to 6. The resulting beta distribution is then numerically
integrated between 0 and τ90. If this definite integral is not equal to 0.9, ρ must
be incremented or decremented as appropriate, and the integration/area check process
repeated. Eventually, either the area test will pass or it will be discovered that there is
no value of ρ consistent with τ90 being the ninetieth percentile value of the distribution.
A sample of estimates for “problem” observations (usually because τ90 is “too close” to
τmode) can be analyzed with successively larger τ90 values until the probability density
function can be integrated. The average of the ρ values obtained via this modified
approach can be regarded as a lower bound estimate of ρ for “problem” observations.

4. Application: estimating fireline production rates

We surveyed more than two hundred California Department of Forestry and Fire
Protection (CDF) firefighters to develop a stochastic representation of fireline produc-
tion. These firefighters were asked to make best-case Tmin, most-likely case Tmode,
ninetieth percentile T90, and worst-case Tmax estimates of the time required to build
a length of fireline using the type of resource they ordinarily commanded (fire en-
gines, bulldozers, or handcrews) for each of several different local control conditions
in which differences in productivity were deemed significant. In each of the California
Department of Forestry and Fire Protection Ranger Units in which the survey was
conducted, three firefighters made estimates for each type of resource. Details of the
survey administration are described in [3].

Values of ρ were calculated as described above for all sets of time estimates.
An ANOVA (P = 0.01) of these ρ values revealed no significant effects from control
condition or resource type, but some effect from administrative unit (CDF Ranger Unit
or Contract County). The mean, mode, and median values of this distribution were
7.22, 6.99, and 6.69, respectively. The lower bound for ρ for “problem” observations
was 12.8. The similarity of distributions of ρ across firefighting resources (figure 1)
and administrative units led us to derive production time distributions throughout the
state assuming ρ = 7.22, allowing estimation of T90 to be dropped from some later
surveys. The “true” value of ρ, it can be assumed, lies somewhere between 7.22 and
12.8.

To obtain a single distribution representing production times for each firefighting
resource/control condition combination, the three sets of estimates were aggregated
using two methods: (1) α and β calculated from means of the three estimates of Tmin,
Tmode, and Tmax, and (2) α and β calculated as means of the three α and three β
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Figure 1. Relative frequency of ρ (a dispersion parameter) for beta distributions of the time required to
build a length of fireline.

derived from the individual sets of estimates. Because the beta distribution parameters
differed little between methods, and because of its stronger intuitive appeal, the first
method appears preferable. Plots of aggregate beta distributions obtained via the
preferred method well described the central tendency of the distributions estimated by
individuals (figure 2).
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Figure 2. Beta distributions of the time required to build 500 feet of fireline by hoselay in brush fuels
(Amador-El Dorado Ranger Unit).

Virtually all of the production time distributions were skewed left (towards shorter
times), often significantly so (figure 3). For the sets of estimates obtained in this
study (assuming ρ = 7.22), T̂ proved to be a robust estimator of E(T ). The mean
absolute deviation of T̂ from E(T ), expressed as a percentage of E(T ), was only 2.1
percent. For a variety of firefighting resources and control conditions, the percentage
difference between T̂ and E(T ) was greatest when the ratio α/β was small, i.e., when
distributions were most skewed (figure 4). (Since β depends on the value ρ2, the
difference between 7.22 and 6 has a significant impact on a distribution’s shape – see
figure 5.) When a distribution function of this type is embedded in a complex stochastic
simulator, the effects of an erroneous assumption about the degree of dispersion become
difficult to predict. At best, it may lengthen the time required for the distributions of
simulation outputs to stabilize within a specified tolerance. At worst, it may lead to
spurious predictions of expected variability in the system. In any study of this kind,
the most knowledgeable individuals should be polled for T90 estimates to calculate a
value of ρ specific to the process being modelled. Another approach to ascertaining
ρ was explored early in the study, but proved impractical to implement. Firefighters
were asked for an increment of time such that when added to and subtracted from their
most likely (modal) estimate it would define a range of values that contained the actual
value 50% of the time. Skewness of the distributions in question made it difficult to
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Figure 3. Beta distributions of the time required to build 500 feet of fireline in brush fuels (Amador-El
Dorado Ranger Unit).

define such a symmetric range about the mode, and firefighters found this increment
more difficult to estimate than T90.

5. Conclusions

The four-estimate, expert-opinion approach described in this paper proved to be
a practical and cost-effective alternative to undertaking a “direct measurement” study
of fireline production rates. The survey met both the CDF’s immediate requirement for
valid “point” estimates of production rates (for a deterministic initial attack simulation
model) and their longer-term need for a stochastic characterization of production rates.
Aside from their value in simulation modeling of initial attack on wildland fires, the
estimated production times provide the CDF with useful “rules-of-thumb” for use
in firefighter training. Firefighters were not intimidated by the survey format, and
expressed confidence in both the process and their estimates. The results of the survey
have credibility with the CDF, and have been incorporated into ongoing decision-
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Figure 4. Percent error of T̂ from E(T ) calculated using α and β plotted against the ratio (α/β)
(n = 327).

making and planning efforts. Other researchers considering an expert-opinion approach
to quantifying the stochastic properties of a production process may find this survey
format to be of considerable value.

On a practical basis, the survey results confirmed a widely held suspicion that
production rates reported in the literature are too high for CDF conditions. To revise
dispatch strategies or make decisions on the basis of such overly optimistic rates
could easily result in significant loss of property and resources. Simulations of initial
attack on wildland fires with the more conservative (and presumably more realistic)
production rates generated by the expert opinion survey is providing the CDF with a
rigorous justification for its current policy of a quick and aggressive initial response,
as well as helping identify incremental improvements to a system that already works
well.

When survey results were incorporated into the stochastic simulator CFES2 [2],
they were not based on the traditional PERT/CPM assumption that production rates can
be assumed to follow a beta distribution ρ = 6. Samples drawn from beta distributions
based on the empirically estimated value for ρ (7.22) incorporated far fewer extremely
slow production rates, and more that are close to the appropriate modes. An accurate
frequency of extreme values is critical for stochastic simulation models of initial attack,
since a major objective of fire planning is to minimize the number of fires that “escape”
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Figure 5. Beta distributions of fireline production times derived using alternative values for ρ.

initial attack (i.e., are not controlled within some size or time limit) due to perimeter
growth exceeding aggregate fireline production.
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